-- Test file for Kate's Euphoria syntax highlighting/code folding.
-- BEGIN region marker test

-- code here

-- END region marker test

-- The N Queens Problem:
-- Place N Queens on an NxN chess board
-- such that they don't threaten each other.
constant N = 8 -- try some other sizes
constant ROW = 1, COLUMN = 2
constant TRUE = 1, FALSE = 0
type square(sequence x)
-- a square on the board
    return length(x) = 2
end type
type row(integer x)
-- a row on the board
    return x >= 1 and x <= N
end type

function threat(square q1, square q2)
-- do two queens threaten each other?
    if q1[COLUMN] = q2[COLUMN] then
 return TRUE
    elsif q1[ROW] - q1[COLUMN] = q2[ROW] - q2[COLUMN] then
 return TRUE
    elsif q1[ROW] + q1[COLUMN] = q2[ROW] + q2[COLUMN] then
 return TRUE
    elsif q1[ROW] = q2[ROW] then
 return TRUE
    else
 return FALSE
    end if
end function

function conflict(square q, sequence queens)
-- Would square p cause a conflict with other queens on board so far?
    for i = 1 to length(queens) do
 if threat(q, queens[i]) then
     return TRUE
 end if
    end for
    return FALSE
end function

integer soln
soln = 0 -- solution number

procedure print_board(sequence queens)
-- print a solution, showing the Queens on the board
    integer k
    position(1, 1)
    printf(1, "Solution #%d\n\n  ", soln)
    for c = 'a' to 'a' + N - 1 do
 printf(1, "%2s", c)
    end for
    puts(1, "\n")
    for r = 1 to N do
 printf(1, "%2d ", r)
 for c = 1 to N do
     if find({r,c}, queens) then
  puts(1, "Q ")
     else
  puts(1, ". ")
     end if
 end for
 puts(1, "\n")
    end for
    puts(1, "\nPress Enter. (q to quit) ")
    while TRUE do
 k = get_key()
 if k = 'q' then
     abort(0)
 elsif k != -1 then
     exit
 end if
    end while
end procedure

procedure place_queen(sequence queens)
-- place queens on a NxN chess board
-- (recursive procedure)
    row r -- only need to consider one row for each queen
    if length(queens) = N then
 soln += 1
 print_board(queens)
 return
    end if
    r = length(queens)+1
    for c = 1 to N do
 if not conflict({r,c}, queens) then
     place_queen(append(queens, {r,c}))
 end if
    end for
end procedure